

新潟県中越地震を事例とした地すべりの発生条件の考察

ハスバートル* 丸山清輝** 村中亮太*** 花岡正明**** 鈴木聡樹*****

1. はじめに

2004年新潟県中越地震に伴い多数の地すべりが 発生し、それによって道路の寸断や河道閉塞など が生じ、中山間地に深刻な影響をもたらした。こ れまで、地震によって斜面崩壊が多発するものの 既存地すべり地が移動することは少ないと言われ てきた¹⁾。しかし、中越地震では地すべり(本報 告では、移動した土塊の乱れが少ないものを地す べりと定義する)の発生が多数認められた。これ らの地すべりは、地震発生前の地すべり地形(以 降、既存地すべり地形という)内で移動したもの が多数見られた²⁾。

中越地震による地すべりについては、地すべり の詳細なタイプ分け、斜面災害の地形・地質的な 特徴、地すべりを含む崩壊の分布と特徴や事例報 告などさまざまな研究がなされてきている。しか し、地震による地すべりの発生条件については、 必ずしも詳細な報告はなされていない。地震によ る地すべりはどのような地形、地質条件で発生す るのか、その解明が地震時の地すべりの発生危険 度評価において重要である。

本研究では、地震による地すべりの危険度評価 手法を提案することを目的として、中越地震で土 砂災害が多発した芋川流域及びその周辺で発生し た地すべりを対象に、詳細な地形、地質調査を実 施してきた。本報文では、中越地震時に発生した 地すべりの地形、地質的な特徴から、地すべりの 発生条件を検討した結果について報告する。

2. 調査地の概要

調査地は、新潟県中越地方の東山丘陵の中南部 にあたる(図-1)。中越地方の地形は、魚野川を境 に、東側は急峻な越後山脈が南北に連なるのに対 し、西側は魚沼丘陵・東山丘陵や東頸城丘陵など 低平な丘陵やその間に分布する盆地からなる。こ れらの丘陵の稜線は顕著な北北東-南南西方向を 示し、本地域の地質構造や地殻変動の結果を反映 している³⁾。東山丘陵の標高は300~450m程度で、 その中央部を芋川が北から南に流れ、魚野川に合 流する。中越地震の本震は東山丘陵の南部で発生 し、余震は東山丘陵の中南部や魚沼丘陵の北部で 発生した。

東山丘陵には、中新世から更新世にわたる褶曲 した地層が広く分布し、下位から泥岩主体の荒谷 層、砂岩・泥岩互層主体の川口層、泥岩主体の 牛ヶ首層、砂質シルト岩主体の白岩層、砂岩主体 の和南津層、シルト・砂・礫からなる魚沼層と なっている。これらの層は主に北北東-南南西方 向に配列し、同方向に延びる背斜・向斜軸によっ て西または東に傾斜している³⁾。また調査地を含 む中越地方には、地すべり地形が多く分布するこ とで知られている。

図-1 中越地方の地形 (★は中越地震本震の 震央を示す)

3. 地形・地質条件と地震時地すべりの発生

3.1 調査方法

調査は、地震発生前後の空中写真及びGISソフ トを用いたDEMデータの地形解析により、調査範 囲における既存の地すべり地形と地震により発生 した地すべりを判読して行った。既存地すべり地 形の判読には1975と1976年撮影の空中写真(1: 20,000)を、地震により発生した地すべりは地震 直後に撮影された空中写真(1:12,000)をそれぞれ 使用した。地形解析には、1975年撮影のものと地 震直後に撮影されたDEMデータを使用した。空中 写真で判読された地すべりブロックをGIS上でポ

A study of causative factors for landslides induced by the Mid-Niigata Prefecture Earthquake in 2004, Japan

リゴン化して地すべりブロックの面積、長さ、幅、 移動方向を求めた。また、GIS上で地すべりブ ロックの縦断図を作成し、地すべり斜面の上端、 下端、中点及び地すべり斜面下部の遷急点等の座 標を計測した。そして、後述する縦断的凸度、下 端勾配などをこれらの座標値から求めた。

調査範囲(面積約127km²)における地形判読の結 果、既存地すべり地形は1.050ブロック、地震に よる地すべりは96ブロックあり、このうち70ブ ロックが既存の地すべり地形内で発生した(図-2)。 これらの地震による地すべりはブロック単位で判 読したもので、一つの既存の地すべりブロック内 に複数のブロックが含まれる場合もあるため、既 存の地すべりブロックを単位として集計し直すと、 地震によって地すべりが発生した既存の地すべり 地形のブロック数は63になる。したがって、既存 の地すべり地形1,050ブロックの内、63ブロック で地震により地すべりが発生し、残りの987ブ ロック内には地すべりの発生が認められなかった。 地質解析は、この63地すべりブロックと既存の全 地すべり地形1,050ブロックを比較した。地形解 析は地震発生前の地すべり地形を分析し行うため、 地震前DEMデータが存在する範囲における727ブ ロックの既存の地すべり地形とその内地震により 地すべりが発生した55ブロックを比較した。

3.2 地形条件と地震時地すべりの発生

地震による地すべりの発生には直接的な要因で

ある地震動の他に、発生場の地形や地質条件が関 与していると推定される。そこで、どのような地 形条件が中越地震時地すべりの発生に関与したの かを明らかにするために、地震時に移動した地す べりの地震発生前の地形を解析した結果、縦断的 凸度、下端勾配、侵食最大深の3項目が地すべり の発生との関連性が比較的高いことが分かった。

3.2.1 縦断的凸度と地震時地すべり

地震によって発生する崩壊は凸型斜面で多いこ とが指摘されている⁴⁾。そこで、地震による地す べりと凸型斜面との関係として、「縦断的にみた凸 度」に着目をした。ここでいう縦断的凸度とは、 「地すべり斜面の下端から上端までの水平距離中点 の比高(y2)/下端から上端までの比高(y1) =y2/y1」で定義した(図·3)。また、地すべり発生 率は、条件に該当する地すべりブロック数に占め る地すべり発生ブロック数の割合と定義した。

縦断的凸度と地すべり発生率との関係を図・4に 示した。地すべり発生率は、縦断的凸度0.6以上で 7.5~22.2%と相対的に高く、0.7以上では縦断的凸 度の値が大きくなるに伴い増加していることが分 かる。なお、縦断的凸度0.4以下で地すべり発生率 が比較的高い原因は現時点で不明である。

3.2.2 下端勾配と地震時地すべり

地すべり斜面の末端が急なほど斜面の安定度は 低いことが推定される。地すべり斜面下部におけ る下端から遷急線までの勾配を下端勾配と定義し (図-3)、地すべり発生率との関係を調べた。図-5 に示すとおり、下端勾配10~15度以上で地すべり が発生し、20~25度以上では下端勾配の増加とと もに地すべり発生率が増大する傾向が見られる。

3.2.3 侵食最大深と地震時地すべり

図・6には、侵食最大深の模式図を示した。調査 範囲の地層は、鮮新世以降と時代が比較的新しい ため、地表水や河川の侵食を受けやすいと考えら れる。地すべりは末端部の侵食によって不安定に なることが推測され、この侵食状況を定量的に評 価することが重要と考えられる。そこで、GISソ フトを用いて、地震発生前の2mメッシュDEM データから30mメッシュ範囲における最高標高を 抽出し、それを用いて接峰面図(侵食を受ける前 の地形図で、ある地域を一定の面積に区画し、各 区画内の最高点に接するように空中に仮想した曲 面から作成したもの)を作成し、地震発生前の地 形との差分を侵食深とした。そして、既存地すべ り地形内における侵食深の最大値を侵食最大深と 定義した。図-7に示すように、侵食最大深が50m 以上になると地すべりが発生し、その

値が大きくなるほど発生率が増大する 傾向が認められる。

図-6 侵食最大深の模式図

3.3 地質と地震時地すべりの発生3.3.1 地質構成と地震時地すべり

表-1には、地質と地すべり発生率との関係を示 した。地震によって発生した地すべりの基岩の地 層は、96ブロック中荒谷層が32ブロックと最も多 く、次いで川口層で25ブロック、白岩層で17ブ ロックであった。しかし既存の地すべり地形数に 占める割合は、砂岩からなる和南津層で17.8%、 砂質シルト岩からなる白岩層で13.3%、及び砂 岩・泥岩互層からなる川口層で9.8%であった。こ れらは、泥岩からなる荒谷層の9.0%、牛ヶ首層の 7.3%及び砂・シルトからなる魚沼層の3.7%に比べ ていく分大きい値となっている。これらから地震 時の地すべりは、砂岩、砂質岩相や砂岩・泥岩互 層の基盤岩と関連している可能性が考えられる。 地震時に滑動した地すべりの面積を比較すると、 砂岩・泥岩互層からなる川口層の地すべり総面積 が553,528m²と最も大きい。地震前の総地すべり 面積に対する割合で見ると、砂岩、砂岩・泥岩互 層と砂質シルト岩の割合が2.9~4.0%と泥岩の2.1 ~2.2%に対していく分大きい値を示した。砂岩・ 泥岩互層や砂質シルト岩の分布域では、塩谷神沢 川や東竹沢地すべりのように規模の大きい地すべ りが発生している。

表・1 地質と地すべり発生率

地層	基岩地質	地震時に移動 した地すべり ブロック数 (N _{EL})	地震前地すべ りブロック数 (N _{PL})	N _{EL} %	地震時に移 動した総地す べりブロック 面積(A _{EL})㎡	地震前総 地すべり ブロック面 積(A _{PL})m ²	A _{EL} %
魚沼層	礫・砂・シルト	3	82	3.7	41,304	4,441,204	0.9
和南津層	砂岩	8	45	17.8	91,494	2,261,713	4.0
牛ヶ首層	泥岩	11	151	7.3	141,587	6,703,733	2.1
白岩層	砂質シルト岩	17	128	13.3	296,096	10,056,541	2.9
川口層	砂岩·泥岩互層	25	256	9.8	553,528	17,093,886	3.2
荒谷層	泥岩	32	355	9.0	355,310	15,820,623	2.2
計		96	*1017		1,204,934	42,971,050	

*注:ここでは分布域の少ない栖吉層、猿倉岳層、鳥屋ヶ峰層、地すべり堆積物を除いた。

3.3.2 地質構造と地震時地すべり

地震により発生した96の地すべりブロックの内、 流れ盤構造の地すべりが49ブロック(51%)を占 め、受け盤構造のものは7ブロック(7%)あった (図・8)。地震により流れ盤構造で発生した地すべ りの割合は、既存地すべり地形1.050ブロックに占 める流れ盤構造のブロックの割合40%(424)に 比べて10%程度大きい。既存地すべり地形に比べ て、地震により流れ盤構造の地すべり発生率が高 い傾向が見られた。なお、ここでいう流れ盤構造 とは、地すべり移動方向を0°として、移動方向と 地層の傾斜方向とのなす角度が±45°以内のもの で、135~225°を受け盤とした。

したがって、地すべりの発生と地質との関係を みると、地質構成では砂岩、砂岩・泥岩互層と砂 質シルト岩の基盤、地質構造では流れ盤構造の場 合の地すべり発生率は、泥岩基盤、受け盤構造の 場合に比べて高いといえる。

4. まとめ

中越地震による芋川流域やその周辺で発生した 地すべりは、地形的には縦断的凸度、下端勾配、 侵食最大深、地質的には流れ盤構造、砂岩や砂質 シルト岩、または砂岩・泥岩互層の基岩などと関

ハスバートル*

独立行政法人土木研究 所つくば中央研究所土 砂管理研究グループ雪 崩・地すべり研究セン 専門研究員、理 俥 Dr. HAS Baator

独立行政法人土木研究 所つくば中央研究所土 砂管理研究グループ雪 崩・地すべり研究セン **A**-総括主任研究員 学術博 Dr. Kiyoteru MARUYAMA

村中亮太***

アジア航測株式会社 (前独立行政法人土 木研究所つくば中央 研究所土砂管理研究 グルー プ雪崩・地す べり研究センター 交流研究員) Ryota MURANAKA

花岡正明****

株式会社高速道路総合 技術研究所(前独立行 政法人土木研究所つく ば中央研究所土砂管理 研究グルー 雪崩・地 -7 すべり研究センター 所長)

Masaaki HANAOKA

いると考えられる。また、地すべりの下端勾配は、 その値が大きいほど地すべりが不安定な状態と なっていることが考えられる。芋川流域では、地 すべり斜面は河川に面したものが多く、地すべり の発生後に河川侵食によって斜面末端が急勾配と なり、不安定化が進んでいたとも推定される。侵 食最大深は、値が大きいほど斜面の侵食が進んだ ことを示し、地すべり斜面の不安定な状態を示し ていると考えられる。しかしながら、侵食最大深 については、下端勾配と同じ意味をもつものとも 考えられることから、今後さらに検討を行ってい く予定である。

連性があると考えられた。縦断的凸度と地すべり

発生率の関係から、縦断的凸度が大きいほど地す べり斜面が地震動によりゆれやすいことを示して

参考文献

- 1) Keefer, D: Landslides caused by earthquakes Geological Society of America Bulletin, Vol. 95,pp.406-421,1984
- 2) 千木良雅弘: 2004年新潟県中越地震による斜面災 害の地質・地形的特徴、応用地質、Vol.46、No.3、 pp.115-124、2005
- 3)柳沢幸夫、小林厳雄、竹内圭史、立石雅昭、 茅原 一也:小千谷地域の地質, 地域地質研究報告(5万 分の1図幅)、 地質調査所、 177p、1986
- 4)小山内信智、内田太郎、野呂智之、山本悟、小野 田敏、高山陶子、戸村健太郎:既往崩壊事例から 作成した地震時斜面崩壊発生危険度評価手法の新 潟県中越地震への適用、砂防学会誌、 Vol.59、 No. 6, pp.60-65, 2007

鈴木聡樹*****

独立行政法人土木研究 所つくば中央研究所土 砂管理研究グルーフ 崩・地すべり研究セン 交流研究員 Soki SUZUKI